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On the Real-Time Hardware Implementation 
Feasibility of Joint Radio Resource 

Management Policies for Heterogeneous 
Wireless Networks 

M.C. Lucas-Estañ and J. Gozalvez 

Abstract— The study and design of Joint Radio Resource Management (JRRM) techniques is a key and challenging aspect in 
future heterogeneous wireless systems where different Radio Access Technologies will physically coexist. In these systems, the 
total available radio resources need to be used in a coordinated way to guarantee adequate satisfaction levels to all users, and 
maximize the system revenues. In addition to carry out an efficient use of the available radio resources, JRRM algorithms need 
to exhibit good computational performance to guarantee their future implementation viability. In this context, this paper proposes 
novel JRRM techniques based on linear programming techniques, and investigates their computational cost when implemented 
in DSP platforms commonly used in mobile base stations. The obtained results demonstrate the feasibility to implement the 
proposed JRRM algorithms in future heterogeneous wireless systems. 

Index Terms— Heterogeneous wireless systems, Joint Radio Resource Management, DSP, embedded systems.  
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1 INTRODUCTION

HE evolution of mobile and wireless communication 
systems is being characterized by the coexistence of 

diverse Radio Access Technologies (RAT) with different, 
but sometimes complementary, technical characteristics. 
In parallel, novel user applications are continuously ap-
pearing with diverse Quality of Service (QoS) require-
ments. Despite the appearance of novel RATs with in-
creasing performance, the research community agrees 
that future mobile and wireless communication systems 
will be composed of heterogeneous RATs physically coex-
isting and offering mobile services to a wide range of 
QoS-demanding users in a coordinated manner. In this 
context, a key aspect of future heterogeneous wireless 
systems is the coordinated management of heterogeneous 
radio resources, usually referred as Joint Radio Resource 
Management (JRRM) or Common Radio Resource Man-
agement (CRRM). The 3GPP (3rd Generation Partnership 
Project) defines the JRRM concept and describes different 
supporting network architectures that ensure the intero-
perability between the different access technologies ([1] 
and [2]). Novel JRRM policies need then to be designed so 
that the total available radio resources are efficiently dis-
tributed among active users in order to maximize the sys-
tem revenue and provide the QoS levels demanded by 
users/services in multimedia environments. To carry out 
the most efficient use of the total available resources, 

JRRM policies must decide for each incoming call the 
RAT over which it will be conveyed (RAT selection) and 
the number of radio resources within the selected RAT 
(intra-RAT RRM) that will be necessary to satisfy the 
user/service QoS requests. Furthermore, the JRRM policy 
and resulting radio resource assignments should be capa-
ble to dynamically adapt to the current operating condi-
tions, for example system load and active multimedia 
services. 

Most of the JRRM studies reported in the literature fo-
cus on the design of initial RAT selection techniques. For 
example, [3] describes the framework over which JRRM 
algorithms can be developed, and proposes some basic 
techniques to address the initial RAT selection dilemma 
based on pre-established service-to-RAT assignments and 
user location. Other studies have investigated how to ex-
ploit multi-technology terminals capability to switch be-
tween RATs in order to free the capacity required to ac-
cept new calls from single-mode terminals. Several 
strategies to perform this traffic rearrangement are dis-
cussed in [4] and references therein. Another JRRM ap-
proach that has received much attention from the com-
munity is load balancing. For example, the JRRM load 
balancing mechanism reported in [5] aims at achieving a 
uniform traffic distribution between the available RATs. 
As the authors point out, such uniform distribution is 
desirable in order to maximize the trunking gain and 
minimize the probability of making unnecessary vertical 
handovers of multi-technology terminals between RATs. 
For non real-time services, the load balancing is per-
formed based on the measured buffer delay, while the 
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authors propose a mechanism based on load thresholds 
for real-time services. In [6], a RAT selection algorithm 
that assigns the user to the most suitable RAT is pro-
posed. The RAT suitability is based on the current RAT 
load and a pre-established load threshold, which are em-
pirically calculated with the target to achieve the maxi-
mum throughput gain. Finally, it is worthwhile highlight-
ing a RAT selection proposal based on the species compe-
tition model [7]. The proposal adapts some RAT parame-
ters (price and support bandwidth) according to their 
current operating conditions in order to attract or dismiss 
users from accessing them. 

Proposals to jointly address the RAT selection and in-
tra-RAT RRM dilemmas have also been reported. For ex-
ample, [8] presents a Joint Call Admission Control (JCAC) 
algorithm that combines the RAT selection and Call Ad-
mission Control (CAC) mechanisms in order to reduce 
the call blocking and dropping probabilities, and ensure a 
fair radio resource allocation. Another interesting JRRM 
algorithm based on neural networks and fuzzy logic has 
been proposed in [9]. This algorithm simultaneously de-
termines the most appropriate RAT and bit rate allocation 
considering factors such as signal strength, resource 
availability, and mobile speed. While [9] determines the 
necessary bit rate at the assigned RAT, it does not tackle 
the problem of intra-RAT radio resources allocation. In 
this context, the work reported in [10] and [11] proposed 
novel JRRM policies that simultaneously assign to each 
user an adequate combination of RAT and number of 
radio resources within such RAT to guarantee the 
user/service QoS requirements. The proposed JRRM 
techniques are based on linear programming and optimi-
zation techniques. 

Previous studies have focused on evaluating the QoS 
performance that can be achieved by novel JRRM tech-
niques, but have not investigated their computational cost 
and implementation feasibility. The evaluation of the 
computational efficiency of new proposals is widely con-
ducted in other research fields like audio and video real-
time compression, where the time spent by the algorithm 
to process the data is crucial to provide a good perform-
ance to the end user. Although time requirements are not 
as demanding as for audio and video compression tech-
niques, JRRM decisions in mobile networks should be 
made as quickly as possible in order to be able to effi-
ciently adapt the use of the radio resources to the current 
operating conditions. Given that JRRM decisions are 
based on an increasing number of variables and data, the 
JRRM processing time is becoming an important factor to 
be considered when designing novel and advanced JRRM 
algorithms. In the mobile communications field, the ma-
jority of studies are based on computer simulations, and 
few of them evaluate the hardware implementation and 
computational cost of novel techniques. As an example, 
Yavuz and Leung [12] measured the CPU time of their 
proposed admission control method running on a com-
puter, and compared it with that obtained with previous 
admission control algorithms. To the authors’ knowledge, 

there are currently no published studies of the hardware 
computational cost of JRRM policies, in particular of ad-
vanced JRRM policies jointly addressing the RAT selec-
tion and intra-RAT RRM dilemmas. In this context, this 
work presents the first hardware implementation of ad-
vanced JRRM policies to analyse their computational cost 
and the time they require to be executed on real hardware 
systems. By comparing their execution time to the time 
needed in current cellular networks to conduct a vertical 
handover or assign radio resources to new users, this 
study will provide valuable indications on the feasibility 
of implementing the proposed JRRM techniques in com-
mercial networks. The result of this study is of relevance 
to the research community since it demonstrates the fea-
sibility of implementing complex JRRM policies, and pro-
vides the first indications on their hardware computa-
tional performance. The study has been conducted using 
a Texas Instrument DSP commonly used in 3G base sta-
tions, and an open source linear programming solver. 
Although higher efficient commercial solvers are cur-
rently available, an open source solver has been used 
since access to its source code was needed for the JRRM 
implementation in the DSP platform. The computational 
cost of JRRM techniques using Texas Instrument DSP is 
first evaluated using the open source linear programming 
solver. The improvement that could be obtained with 
more efficient linear programming solvers is then esti-
mated by means of computer simulations in order to have 
a more realistic JRRM computational cost estimation. 

The rest of the paper is organized as follows. Next sec-
tion presents the JRRM proposals that are analysed in this 
work, and evaluates their system and QoS performance. 
In Section 3, the hardware platform employed to investi-
gate the computational cost of the proposed techniques is 
presented, and the linear programming tools employed to 
solve the JRRM dilemma are shortly described in Section 
4. Section 5 presents the hardware computational cost of 
the JRRM policies, while Section 6 describes potential 
computational cost improvements. 

2 JRRM PROPOSALS   
The implemented JRRM techniques, initially proposed in 
[10] and [11], are aimed at providing the highest possible 
homogeneous user satisfaction levels to all service types 
by exploiting the QoS/resource flexibility offered by dif-
ferent services present in a multimedia framework. For 
example, email users do not require the same number of 
radio resources than a video conferencing session to ob-
tain the same user satisfaction levels. In this work, the 
user satisfaction is represented by utility values identify-
ing the radio resources needed per service class to achieve 
certain user QoS satisfaction levels. To evaluate the effi-
ciency of the implemented JRRM techniques, this work 
considers an heterogeneous wireless environment where 
the GPRS (General Packet Radio Service), EDGE (En-
hanced Data rates for GSM Evolution) and HSDPA (High 
Speed Downlink Packet Access) RATs physically coexist. 
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The JRRM techniques have been implemented following 
the JRRM server approach discussed in the 3GPP stan-
dards ([1], [2]). This approach considers a centralized ar-
chitecture that places the JRRM functionality in a node 
that collects information of all available RATs1. Since the 
JRRM techniques use utility functions to estimate the us-
ers’ QoS demands, only updated information about each 
RAT’s load must be transmitted to the JRRM server. Us-
ing this information, the implemented JRRM techniques 
manage the available radio resources to maximize the 
percentage of satisfied users. In particular, the JRRM poli-
cies have been designed to achieve optimum radio re-
source assignments following a user fairness approach: 
the proposed techniques aim at providing similar, and 
highest possible, utility levels for all service types, and 
only when the number of available radio resources is 
lower than the demand, will the implemented policy give 
priority to certain traffic classes. Both JRRM proposals are 
based on linear programming optimization techniques. 
To apply the linear programming mechanisms, the prob-
lem objective and constraints must be expressed as linear 
functions. Two different approaches have been proposed 
to achieve the sought problem objective. The optimal so-
lution to both approaches is determined by the same sys-
tem and service constraints. 

2.1 Traffic Class Utility Values 
Utility functions try to characterize the QoS satisfaction 
level experienced by a user based on the requested traffic 
service and the radio resources it has been assigned 
(combination of RAT and number of radio resources 
assigned within that RAT). This is a challenging task 
because user satisfaction is a subjective concept that 
heavily depends on user perceptions. The defined utility 
functions try to express the perceived user QoS as the link 
quality, and therefore data rate, varies. To establish the 
utility functions, the minimum, mean, and maximum QoS 
levels demanded by users are first defined per service 
class as illustrated in Fig. 1. This work considers a 
multimedia traffic scenario with email (background), web 
(interactive) and real-time H.263 video (with different 
mean bit rates) users. 

For web and email services, utility values are ex-
pressed in terms of the user throughput. The minimum, 
mean and maximum QoS levels for web users have been 
defined as the throughput needed to satisfactorily trans-
mit 90%, 95% and 97.5% of web pages in less than 4 sec-
onds as established by the 3GPP TS 22.105 recommenda-
tions [13]. These high percentiles have been selected due 
the high transmission reliability requirements of non-real 
time data services. Web traffic is here modeled using the 
work reported in [14], whereas [15] has been used to 
model email traffic. The email model considers the 
transmission of emails with and without attachments, 
 

1 The implemented JRRM techniques could also operate under the 
3GPP JRRM distributed architecture given the limited amount of infor-
mation they require to be exchanged among different RATs (number of 
active users and their requested services). 

which makes it difficult to successfully transmit emails 
with large attachments within the 4 seconds 3GPP rec-
ommendations. Consequently, the email QoS thresholds 
have been established based on the throughput required 
to satisfactorily transmit 65%, 75% and 80% of the emails 
(with or without attachments). Once the QoS satisfaction 
thresholds have been established for web and email ser-
vices, the utility functions have been defined so that users 
perceive a null utility value if their minimum QoS de-
mand is not satisfied. This condition avoids assigning 
radio resources to users that would experience very poor 
QoS levels. Web and email user satisfaction linearly 
grows with the experienced throughput between the 
minimum and maximum QoS thresholds. Utility values 
equal to one have been avoided for web and email trans-
missions to account for the transmission reliability re-
quirements of these services, and the dependence of the 
achievable throughput levels on the experienced channel 
quality conditions. 

For real-time video services, video frames are consi-
dered to be satisfactorily transmitted if they are transmit-
ted before the next video frame is to be transmitted. Con-
sequently, the utility functions for real-time video servic-
es have been defined based on the percentage of correctly 
transmitted video frames, and the real-time video utility 
functions are independent of the mean video bit rates. 
The real-time video QoS satisfaction thresholds have been 
established considering the H.263 traffic model described 
in [16] and the indications provided in [17]. The studies 
reported in [17] show that a 25%, or even higher, drop-
ping rate does not have a catastrophic effect on the QoS 
perceived by H.263 video users, and that dropping rates 
as high as 5% can be overcome if appropriate transmis-
sion techniques are invoked. Based on these results, the 
minimum and mean QoS satisfaction levels correspond to 
guaranteeing that 75% and 95% of video frames are 
transmitted before the next video frame needs to be 
transmitted. The maximum utility value for real-time 
video users has been set equal to one, and is achieved 
when all video frames are transmitted before the next 
video frame is to be transmitted. Although the 5% differ-
ence between the mean and maximum QoS levels might 
look negligible, this 5% includes the H.263 I-frames. 
These frames include information of independently coded 
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images in a video sequence, and are also used to 
code/decode other images exploiting temporal redun-
dancy. As a result, I-frames have a significant impact on 
the user perceived QoS level, and require high transmis-
sion rates due to their potential large size. Similarly to 
web and email users, real-time video users also perceive a 
null utility value below the minimum QoS threshold. Fol-
lowing the indications in [17] that highlight that an ac-
ceptable video quality requires a high percentage of cor-
rectly received video frames, the video utility increases 
slowly with the percentage of transmitted frames until the 
mean QoS level is achieved, and then rapidly until the 
maximum QoS level. 

Once the utility functions are established, it is then 
necessary to relate the utility values with the different 
radio resource assignments. To establish this relation, the 
throughput achieved by each RAT and number of radio 
resources combination must be considered. However, it is 
difficult to estimate the throughput that could be 
achieved with a given number of radio resources given 
that the simulated radio access technologies implement 
link adaptation schemes. These schemes dynamically 
vary the used transmission mode (i.e., modulation and 
coding scheme) based on the experienced channel quality 
conditions. To account for these variations, and consider-
ing the difficulty to predict the achievable throughput in 
adaptive radio interfaces, the relation between the utility 
values and radio resource assignments has been estab-
lished considering the data rate of the transmission mod-
es providing a balance between high data rates and high 
error correction capabilities. In this context, average 
throughput values of 13.4 kbps and 22.4 kbps per timeslot 
(TS) have been selected for GPRS and EDGE, respectively, 
corresponding to the data rates of the coding scheme 2 
(CS2) in GPRS, and the modulation and coding scheme 5 
(MCS5) in EDGE [18]. In HSDPA, a high number of 
transmission modes are defined depending on the num-
ber of assigned codes. This work considers the transmis-
sion modes related to the 30 CQI (Channel Quality Indica-
tor) values for User Equipment category 10 [19]. To 
achieve the sought balance between high data rate and 
high error correction capabilities, the selected transmis-
sion rate per number of assigned HSDPA codes corre-
sponds to that achieved by the ‘intermediate’ transmis-
sion mode out of all possible modes for a given number of 
codes. Once the relation between throughput and radio 
resource assignment (combinations of RAT and number 
of radio resources) has been established, the utility values 
corresponding to each assignment can be obtained using 
the utility functions shown in Fig. 1.  

For real-time H.263 video services, an additional step 
is necessary. A cumulative distribution function (CDF) of 
the throughput needed to transmit each video frame be-
fore the next video frame is to be transmitted is derived 
following the implemented H.263 video model [16]. 
Through these CDFs, the percentage of video frames re-
ported in Fig. 1 can be related to the corresponding neces-
sary throughputs for the various video bit rates consi-

dered in this work. Once the utility values are expressed 
as a function of the throughput, the utility values can be 
related to radio resources using the previously discussed 
relation between throughput and radio resources. Table 1 
shows an example of the utility values obtained for the 
real-time 64 kbps H.263 video users with the different 
radio resource assignments; the utility values are listed 
according to the throughput provided by the correspond-
ing RAT/radio resources combination. In this table, the 
assignments (RAT and number of radio resources) are 
denoted as xY, corresponding to x radio resources (time-
slots or codes) from RAT Y (GPRS is represented as G, 
EDGE as E, and HSDPA as H). It is interesting to note 
that certain assignments cannot achieve utility values 
greater than zero.  

2.2 JRRM Policy Maximizing the Utility Values 
Homogeneously Assigned to Users 

The first JRRM proposal seeks to maximize the multipli-
cation of the utility values perceived by all the active us-
ers in the system, which results in the following objective 
function: 

∏
=

N

j
ju

1

max  (1) 

which is equivalent to: 

∏
=

N

j
ju

1

lnmax  (2) 

where uj represents the utility value assigned to user j 
in a radio resources distribution round, and N corres-
ponds to the total number of users in the cell. In scenarios 
where all users demand the same QoS and all radio re-
sources offer equal QoS levels, (1) or (2) is satisfied when 
utility values are equally distributed among users [20]; 
the technique is thereby referred to as MAXIHU (MAXI-
mum Homogeneous Utility values). On the other hand, it 
might not be possible to assign equal utility values to all 
users in multimedia scenarios with diverse and discrete 

TABLE 1 
UTILITY VALUES FOR 64KBPSVIDEO USERS 

Res./ 
RAT 

Throughput 
(kbps) 

Utility 
value 

Res./ 
RAT 

Throughput 
(kbps) 

Utility 
 value 

1G 13.4 0.00 1H 116.5 0.38 
1E 22.4 0.00 6E 134.4 0.44 
2G 26.8 0.00 7E 156.8 0.93 
3G 40.2 0.00 8E 179.2 0.98 
2E 44.8 0.00 2H 396 1.00 
4G 53.6 0.00 3H 741 1.00 
5G 67 0.00 4H 1139.5 1.00 
3E 67.2 0.00 5H 2332 1.00 
6G 80.4 0.00 7H 4859.5 1.00 
4E 89.6 0.29 8H 5709 1.00 
7G 93.8 0.31 10H 7205.5 1.00 
8G 107.2 0.35 12H 8618.5 1.00 
5E 112 0.37 15H 11685 1.00 
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radio resources. In this case, MAXIHU will try to maxim-
ize its objective function and homogeneously satisfy all 
users. MAXIHU’s objective function can then be ex-
pressed as: 

∑∏
==

=
N

j
j

N

j
j uu

11

lnln  (3) 

with uj defined in (4): 
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In (4), ),( srU j  represents the utility value obtained by 
user j when assigned s radio resources (codes or time-
slots) of RAT r (r is equal to 0, 1 or 2 for GPRS, EDGE and 
HSDPA respectively), and s ∈ [1,cr] with cr corresponding 
to the maximum number of radio resources available at 
each RAT. sr

jy , is a binary variable equal to one if user j is 
assigned s radio resources of RAT r, and equal to 0 if not. 
The proposed JRRM policy focuses then on deciding for 
each user which sr

jy , variable is equal to one, considering 
that only sr

jy , variables achieving a utility value greater 
than zero are allowed. Given that only one sr

jy , variable 
can be equal to one for each user, the following expres-
sion applies: 
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To express the objective function as a lineal equation, 
all users must have a variable sr

jy , equal to one. As a re-
sult, (5) becomes: 
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MAXIHU objective function can then be expressed as: 

( ) sr
j
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2.3 JRRM Policy Maximizing the Minimum Utility 
Value Perceived by a User 

The second approach seeks to maximize the lowest utility 
value assigned to a user in a radio resources distribution 
round. This policy increases the minimum QoS that can 
be perceived by any user in the system, and is thereby 
referred to as MAXILOU (MAXImise Lowest Utility). 
MAXILOU’s objective function can then expressed as:  

{ } jNj
u

,...,1
minmax
∈

 (8) 

where uj is defined in (4). In order to apply linear pro-
gramming techniques to solve the established problem, 
(8) must be expressed as a linear equation. To this aim, a 
new real variable denoted z, and equal to the smallest 
utility value assigned to a user, has been defined, which 
results in the following objective function: 

{ }Njuzz j ,...,1with,max ∈∀≤  (9) 

2.4 JRRM Constraints 
Once the JRRM objective functions have been defined, the 
problem statement must be completed with the system 
and service constraints. The first system constraint is con-
ditioned by the limited number of available radio re-
sources in the system (10). When such limitation prevents 
the possibility to grant all users their minimum QoS de-
mand, none of the two JRRM proposals would result in a 
satisfactory solution. In fact, MAXIHU’s objective func-
tion does not even consider this possibility (see Section 
2.2). In the case of MAXILOU, its objective function is 
equal to the null value when there are not enough re-
sources to satisfy the minimum QoS demand to all active 
users. In that case, whatever radio resource distribution 
with at least one user perceiving the zero utility value is 
an optimum solution to the linear programming problem. 
To avoid this situation, the system constraint (11) imposes 
that one sr

jy ,  variable must be equal to one for each ac-
tive user. Since (11) would be unfeasible if there are not 
enough resources to satisfy the minimum QoS level to all 
active users, some users should be eliminated from the 
radio resources distribution process. 
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MAXILOU and MAXIHU base their resource distribu-
tion decisions on the load conditions and the different 
users/services QoS requirements. As a result, this work 
applies the JRRM mechanisms whenever a transmission 
ends or a user requests resources for a new transmission. 
In this case, only active video users that were assigned 
resources in the previous JRRM distribution round can 
maintain the minimum number of their assigned re-
sources (smin,j radio resources from RAT rmin,j) that guaran-
tees their minimum QoS demand. These video users have 
then to compete with the rest of users for other radio re-
source assignments further improving their QoS satisfac-
tion. This condition can be expressed as follows: 

}3,...,1{),(),( min,min,

3

1 1

, =∈∀≥⋅∑∑
= =

jjjj
r

c

s

sr
jj tNjsrUysrU

r

 (12) 

where tj represents the traffic type demanded by user j 
(tj is equal to 1, 2 or 3 for email, web and real-time video 
services respectively). 

In scenarios where it is not possible to achieve equal 
utility values for all active users due to the scarcity of 
available radio resources, users are served based on the 
following service priority: real-time H.263 video (higher 
priority), web, and email. Among real-time video users, 
those with higher mean video bit rates are served first. 
The user priority criterion is represented by  ( jk in-
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dicates that user k is higher priority than user j). When the 
service prioritization criterion is applied between two 
video users characterized by different mean video bit 
rates, the lowest priority user (m) could also have ob-
tained radio resources in the previous JRRM distribution 
round. In this case, the condition established in (12) 
comes first, and user m will maintain the smin,j radio re-
sources from RAT rmin,j needed to guarantee its minimum 
QoS level. When such minimum level is achieved, the 
lowest priority user will not be assigned additional re-
sources until the highest priority user (k) surpasses its 
utility value ( ),( min,min, jjj srU ). This constraint is ex-
pressed as: 

jkNjkjk
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where (ra,sa) represents the subset of the total possible 
RAT/resource assignments (r,s) that verify 

),(),( min,min, jjjk srUsrU < , and (rb,sb) the subset of the total 
possible RAT/resource assignments that verify 

),(),( min,min, jjjk srUsrU ≥ . Following (13), if active users 
cannot obtain their minimum QoS demand (it is not pos-
sible to satisfy (10) and (11)) and the linear objective func-
tion does not have a solution, users with the lowest prior-
ity will be eliminated from the JRRM distribution round 
until the present users and their respective demands al-
low for a linear programming JRRM solution. 

2.5 JRRM System Performance 
The performance of MAXILOU and MAXIHU has been 
evaluated in a simulation platform that emulates the dis-
tribution of GPRS, EDGE and HSDPA radio resources 
among real-time H.263 video, email and web users. It has 
been simulated one frequency carrier per RAT, i.e. eight 
timeslots for GPRS and EDGE, and 14 HSDPA codes. In 

terms of service distribution, email, web and real-time 
video transmissions represent each a third of the new 
service requests; new video service requests are equally 
distributed among 64, 256 and 512kbps video bit rates. All 
three RATs are assumed to provide the same radio cover-
age. Fig. 2 depicts the utility values per service class 
achieved by each JRRM proposal considering 10 and 20 
users per cell respectively. The figure shows the percen-
tage of users per service class that achieve the utility val-
ues corresponding to the minimum, mean and maximum 
QoS levels shown in Fig. 1. The simulated scenarios result 
in a traffic load higher than the load that could be served 
with the simulated radio resources. In this context, it is 
not possible for the simulated scenarios that all service 
classes achieve maximum QoS levels. However, the ob-
tained results show that both JRRM proposals satisfy 
their various objectives: 
• The majority of services achieve their minimum QoS 

level, and only when such level is guaranteed, re-
sources are additionally assigned to higher priority us-
ers. 

• The number of served users is the maximum possible 
satisfying the system and service constraints. 

• The service priorities criterion defined in (13) is correct-
ly applied under radio resources shortage conditions. 
It is also important to highlight that MAXILOU and 

MAXIHU assign the same utility value to the user that 
perceived the lowest utility value at each radio resources 
distribution round, which means that both proposals 
achieve the maximum possible utility value for that user. 
However, a higher percentage of users perceive higher 
QoS levels when MAXIHU is applied as a result of the 
different objectives functions. The implementation of 
MAXILOU guarantees that the highest possible minimum 
utility value assigned to any user is reached. However, 
when this objective is fulfilled, the other users with higher 
utility values stop competing for additional radio re-
sources that could further improve their QoS satisfaction 
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Fig. 2. Achieved utility values per service class. 
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level. This is the case because when the minimum utility 
value assigned to any user is maximized, MAXILOU ter-
minates its JRRM radio resources distribution round. On 
the other hand, if MAXIHU is applied, the remaining us-
ers still compete for additional resources to improve their 
perceived utility value since the objective function in-
creases as the users’ utility values increase. This situation 
is also highlighted when analyzing the percentage of 
JRRM distributions over which radio resources are left 
unassigned. While MAXILOU left unassigned radio re-
sources in 81% and 42% of the JRRM distribution rounds 
in the 10 and 20 users per cell scenarios respectively, these 
percentages decrease to only 39% and 11% for MAXIHU. 
These results clearly highlight MAXIHU’s more efficient 
use of the available radio resources. 

An important characteristic of heterogeneous wireless 
systems is the possibility to conduct vertical handovers 
(VHO) between RATs. Although such handovers can 
increase the QoS, they also incur in an additional delay 
and overhead that must be carefully controlled, in 
particular for delay sensitive real-time services. The time 
required to execute vertical handovers has been measured 
in real mobile networks, and the obtained VHO delays for 
voice calls are shown in Table 2 (the VHO is conducted 
from UMTS to GSM). To perform the measurements, the 
Nokia 6720c handset supporting GSM/GPRS/EDGE and 
UMTS/HSDPA has been used. The engineering mode 
terminal incorporates the Nemo Handy application, 
which provides the terminal with a powerful radio 
monitoring capability. Nemo Handy provides extensive 
network parameters and exchanged signaling messages 
captured over voice calls and data transfers. The logged 
measured data has been processed using the Nemo 
Outdoor software tool. As shown in Table 2, the vertical 
handover procedure currently implemented in mobile 
networks only resulted in an average delay of 157 ms, 
which is tolerable for voice services. The vertical 
handover procedure for data services was also evaluated. 
In this case, it is important to note that although a packet 
switched (PS) vertical handover procedure is already 
defined in the 3GPP specifications [21], the measured 
mobile network didn’t implement it since it was based on 
3GPP Release 5. Instead, it used a cell reselection 
procedure to switch RATs for active PS users, which 
increased the inter-RAT change delay to a few seconds. 
Such increase will be avoided when the defined 3GPP PS 
vertical handover procedure (3GPP Release 6) is 
implemented in mobile networks; in fact, the 3GPP 
standards indicate in [22] that a PS vertical handover 
from GSM to UMTS/HSDPA cells must be executed in 
less than 220 and 190 ms for FDD and TDD cells 
respectively (assuming good radio conditions [22]). 

Despite the short measured VHO delays, vertical han-
dovers must be controlled, in particular for real-time ser-
vices with tight delay requirements. To this aim, the 
MAXIHU and MAXILOU proposals guarantee that in 
each distribution round, active real-time video users will 
maintain at least their minimum QoS level using re-

sources from the RAT they were previously assigned (12). 
These users will only change RATs if they can obtain 
higher QoS levels using resources available from other 
RATs. This approach has been adopted to achieve a bal-
ance between QoS and cost of VHOs. For non real-time 
services, vertical handovers are permitted without any 
restrictions due to their higher tolerance to delays. Fig. 3 
shows the percentage of transmissions that ended up 
with and without switching RATs for real-time services. 
This figure confirms that the two JRRM proposals limit 
the number of vertical handovers for real-time services. 
For non-real time services, the percentage of sessions that 
didn’t experience a VHO is reduced to 53% and 24% with 
MAXIHU, and to 51% and 24% with MAXILOU when 
considering 10 and 20 active users per cell respectively. 
The increase in the number of VHOs for non-real time 
users as the load increases is justified by the QoS benefits 
that such VHOs produce (Fig. 2). 

Finally, the performance of MAXIHU and MAXILOU 
is compared to some well established JRRM techniques 
reported in the literature: 
• Service based RAT selection, SeRS [3]. This technique is 

based on pre-established service-to-RAT assignments. 
For each service, a prioritized list of RATs is main-
tained. When a new user requests access to the system, 
the system tries to allocate the user to the first RAT 
from its list with available capacity. 

• Load balancing based RAT selection, LBRS [23]. The 
LBRS technique assigns each user requesting access to 
the system to the RAT having the lowest load. The load 
metric is calculated as the ratio of utilized capacity to 
the total available capacity in each RAT. 

• Satisfaction based RAT selection, SaRS [24]. Each time a 
new user requests access to the system, this technique 
evaluates the number of satisfied users in each RAT, 
and assigns the new user to the RAT with a higher per-
centage of satisfied users. 
The QoS levels obtained by each of the reference tech-

TABLE 2 
TIME TO EXECUTE A VHO FOR VOICE CALLS 

Average 157 ms 

Minimum 58 ms 

Maximum 274 ms 
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Fig. 3. Percentage of real-time video transmissions that ended 

up with/without switching RATs. 
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niques are also depicted in Fig. 2. The results clearly show 
that MAXIHU and MAXILOU outperform the three ref-
erence techniques in the simulated scenarios. Only in the 
scenario with 20 users per cell, LBRS and SeRS achieve 
higher QoS levels for the lowest priority users, but this is 
done at the expense of significantly degrading the QoS 
performance for the rest of services. This is due to an inef-
ficient LBRS and SeRS resources distribution that resulted 
in low priority or background users being assigned re-
sources with transmission capabilities exceeding their 
QoS demands. As a result, these services achieve higher 
QoS satisfaction levels than real-time video users. These 
results highlight MAXIHU and MAXILOU’s high QoS 
performance, as well as their capacity to adapt and satisfy 
the established system conditions and QoS objectives un-
der varying operating conditions. Although the reference 
techniques have a lower computational cost, the next sec-
tion will demonstrate the implementation feasibility of 
the JRRM proposals based on linear programming and 
optimization techniques. In this context, and taking into 
account the QoS limitations of the reference techniques, 
the JRRM proposals are characterised by a favourable 
performance versus computational cost trade-off.  

3 HARDWARE PLATFORM  
Cellular base stations must continuously handle increas-
ing capacities, process higher data rates, and support 
multimedia standards, while at the same time there is an 
increasing demand for reduced size, cost and power con-
sumption of communications equipment. In this context, 
the evolution of cellular technologies is highly dependent 
on the evolution and adoption of high performance DSPs. 
The TMS320C6000TM DSP architecture of Texas Instru-
ments is capable of scaling to speeds faster than 1 GHz, 
and achieves around 9000 MIPS for single-core devices 
[25]. The TMS320C6455 DSP is one of the highest-
performance fixed-point DSP in the TMS320C6000TM DSP 
platform, and it is the one used in this work to estimate 
the computational performance of the proposed JRRM 
algorithms. It performs at up to 9600 MIPS at a 1200 MHz 
clock rate, and works with a 32 bit word enabling a high 
accuracy in arithmetic operations [26]. The TMS320C6455 
DSP core employs eight functional units to achieve max-
imum parallelism in processing 3G algorithms, each of 
them capable of executing one instruction every clock 
cycle [26].  

The computational performance of the proposed JRRM 
techniques has been evaluated using the Code Composer 
Studio (CCStudio) software [27]. This software is the in-
tegrated development environment for Texas Instru-
ment’s (TI) DSPs, and includes compilers for each of TI's 
device families. This software also incorporates a tool that 
enables the real-time simulation of most of TI’s DSPs, in-
cluding the TMS320C6455. The CCStudio also includes 
source code editor, project build environment, debugger 
and profiler features. These tools enable users to produce 
an efficient code for their applications employing C or 

C++ programming language. In the debug session, the 
C/C++ code or the corresponding machine code can be 
shown and also the value of memory positions, registers, 
or variables can be monitored. Furthermore, CCStudio’s 
interactive profiler provides some program performance 
analysis parameters, such as the number of elapsed clock 
cycles, which enable measuring the computational cost of 
the application that is being executed. 

4 LINEAR PROGRAMMING RESOLUTION 

4.1 Linear Programming Mechanisms 
The problem statement, system and service constraints 
have been mathematically defined in Section 2. The prob-
lem objective has been expressed by a linear objective 
function with binary integer unknown variables sr

jy , , and 
also a real variable z in the case of MAXILOU. In opera-
tions research, the type of problems that only consider 
binary integer variables is referred to as Binary Integer 
Programming (BIP), while those also considering some 
real variables are referred to as Mixed Integer Program-
ming (MIP) [28]; BIP problems are a particular case of 
MIP problems and the same methods are employed to 
solve them. Different approaches can be used to solve 
MIP problems. One of the most popular approaches due 
to its performance and computational properties is the 
Branch and Bound (B&B) method [28]. This technique 
solves an ordered sequence of reduced linear program-
ming problems until an optimum solution is achieved. 
The sequence of problems is obtained by reducing the 
possible set of values for every integer variable. Each re-
duced problem is referred to as a node since the B&B res-
olution method is usually represented by a tree topology. 
When a binary variable is considered, two reduced prob-
lems can be derived by fixing the variable value to zero or 
one. To solve these reduced problems, the integer condi-
tion of the unknown variables is relaxed, and real values 
are allowed. The simplex method is then applied to the 
resulting linear programming problems [28]. The simplex 
method is regularly employed in linear programming 
problems with a large number of variables that require 
computationally efficient solutions. The simplex method 
is an algebraic procedure that makes use of the fact that 
the linear functions expressing the system and user con-
straints present in the problem statement reduce the 
range of possible solutions to a limited spatial region. It 
has been demonstrated that the solution that optimizes 
the objective function is placed in a vertex of this region 
[28]. Therefore, the simplex method moves from one ver-
tex to another one improving the objective function value 
until no better solution can be obtained. In this context, an 
iteration of the simplex method is made for each eva-
luated vertex. 

Since the Branch and Bound method was proposed, 
more efficient and faster methods have been developed to 
solve MIP problems. For example, the Branch and Cut 
method [28] incorporates the use of cutting planes to the 
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B&B method. Cutting planes are new functional con-
straints that reduce the feasible solutions region of the 
relaxed linear programming problem without eliminating 
feasible solutions to the original MIP problem. The 
Branch and Cut method has therefore been employed in 
this work to solve the MIP problems. 

4.2 Linear Programming Solvers 
To solve the linear programming problems associated to 
the radio resources distribution dilemma investigated in 
this work, two different linear programming software 
applications have been considered: a state-of-the-art 
commercial solver called CPLEX [29], and LP_SOLVE, a 
commonly-used open source solver [30]. Both linear pro-
gramming solvers implement the required mechanisms to 
solve the MIP problems discussed in the previous section. 
CPLEX is a powerful software that incorporates the fast-
est and most efficient fundamental algorithms to solve 
mathematic optimization problems with high computa-
tional requirements. Regarding MIP resolution mechan-
isms, CPLEX employs state-of-the-art algorithms and 
techniques as well as proprietary solutions to solve diffi-
cult MIP problems. Despite its high performance, CPLEX 
is a commercial solver and it is then not possible to access 
its source code, which is required to evaluate its computa-
tional performance in the DSP emulator software. In this 
context, LP_SOLVE, which is an open source solver, has 
also been considered in this work given that its JRRM 
computational performance can be studied with the 
CCStudio software. LP_SOLVE is released under the 
LGPL (the GNU lesser general public license) license, and 
many people have contributed to its development. 

Several studies have previously evaluated the perfor-
mance of both solvers. For example, Brglez and Osborne 
[31] showed that a solver’s computational performance 
depends on the problem statement format, for example 
on the order at which variables and constraints are ex-
pressed in the instance of the problem. According to [31], 
very different computational performance results can be 
achieved with several instances of the same problem on 
the same platform and with the same version of the solv-
er. Consequently, a high number of problems should be 
solved and statistical data should be provided. The time 
spent by CPLEX and LP_SOLVE to obtain the optimal 
solution for linear programming problems has been com-
pared in [32]. This work showed that CPLEX is 100 times 
faster than LP_SOLVE executing the simplex method to 
solve the selected problems. The performance of both 
solvers addressing MIP problems has also been measured 
in [33] and [34]. These studies provide the CPU and user 
solution times respectively for a wide variety of prob-
lems, demonstrating the higher execution time efficiency 
of the CPLEX solver. The results depicted in [34] show 
that only in less than 0.03% of the considered problems, 
the elapsed time is similar for both solvers. For the re-
maining problems, CPLEX outperforms the results ob-
tained by LP_SOLVE, and while CPLEX solves a high 
number of problems in less than 1 minute, LP_SOLVE 

does not even achieve the optimum solution for those 
problems when a time limit of 2 hours is considered. De-
spite the higher CPLEX efficiency, it can not be imple-
mented in the DSP emulator application due to its com-
mercial nature. As a result, LP_SOLVE is the linear pro-
gramming solver used in the CCStudio DSP software si-
mulator to solve the JRRM problems. 

5 COMPUTATIONAL PERFORMANCE ANALYSIS  
To evaluate the applicability of the proposed JRRM al-

gorithms in real systems, this work has implemented 
them in the TMS320C6455 DSP using the DSP simulator 
CCStudio (Section 3). The profiling tool of the DSP simu-
lator provides the number of elapsed clock cycles for each 
function in the program. The time required to solve a 
JRRM problem can then be calculated dividing the num-
ber of elapsed clock cycles by the frequency of the inter-
nal clock (1200 MHz for the TMS320C6455 [26]). As pre-
viously discussed, the linear programming software used 
in the DSP simulator to solve the MIP JRRM problems is 
the LP_SOLVE 5.5 solver (Section 4). 

Fig. 4 depicts the computational time required by 
MAXIHU and MAXILOU to find a JRRM distribution 
solution when implemented in the TMS320C6455 using 
LP_SOLVE. The results correspond to a scenario where 
email, web and real-time video transmissions represent 
each a third of the new service requests, and new real-
time video service requests are equally distributed among 
16, 64 and 128kbps video bit rates. Given that no time 
threshold has been currently defined in the community to 
determine whether a JRRM algorithm is feasible or not 
feasible, this work considers as valuable benchmarks the 
time needed in current mobile networks to assign radio 
resources to a new user or conduct a vertical handover. In 
this context, it is important to highlight that active users 
do not stop or pause their transmissions while the JRRM 
algorithm is being executed since the algorithm is based 
on utility functions previously derived in an offline 
process. Since the JRRM techniques are executed each 
time a user requests access to the system or ends its 
transmission, the JRRM execution time would only have 
an effect on new users. Field measurements have been 
conducted to measure the time needed to assign radio 
resources to a new user or conduct a vertical handover. 
The conducted measurements have shown that 3 to 6 
seconds are needed to assign radio resources to a new 
user (validating the indications reported in [35]), while 
vertical handovers require an average of 157ms for voice 
transmissions (Table 2)2. Taking into account these mea-
surements, JRRM execution times of some hundreds mil-
liseconds can be considered reasonable times to validate 
the possible implementation of the proposed JRRM poli-
cies in mobile networks.  

Based on the previous reasoning, the results depicted 

 
2 The average time needed to conduct a vertical handover increased to 

6.7 seconds for data transmissions in current networks. 
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in Fig. 4 show that MAXILOU is capable to find an opti-
mum JRRM solution when 5 users actively request re-
sources in reasonable times: the average time needed to 
find a JRRM distribution solution is equal to 0.21s, whe-
reas 95% of the JRRM problems were solved in less than 
0.26s. Similarly to MAXILOU, the time needed by MAX-
IHU to find an optimum JRRM solution using LP_SOLVE 
seems only viable for scenarios with 5 users (the average 
time is equal to 0.09s, whereas 95% of the JRRM problems 
were solved in less than 0.11s). The performance for both 
techniques degrades as the user load increases, although 
MAXILOU required in average lower execution times 
than MAXIHU for higher loads. The inefficiency of some 
LP_SOLVE algorithms prevented analysing the MAXIHU 
execution times in the DSP platform for scenarios with 15 
and 20 users per cell (DSP runs out of memory). To ana-
lyse these scenarios, simulations have been conducted 
using a PC with a 2.6GHz AMD Opteron processor, 1MB 
of cache and 3GB of RAM. The results depicted in Table 3 
show that the CPU time needed by MAXIHU to find op-
timum JRRM distribution solutions is higher than re-
quired by MAXILOU, and significantly increases for 
loads above 10 users per cell. The degraded MAXIHU 
computational performance is due to the fact that the 
simplex and Branch and Cut implementations in 
LP_SOLVE are not adequate to solve the MAXIHU MIP 
problems when a high number of users simultaneously 
demand radio resources. 

The results depicted in Fig. 4 and Table 3 seem to indi-
cate that the proposed JRRM algorithms do not achieve 
acceptable execution times when a high number of users 
are participating in the distribution process. However, it 
is important to remember that these results have been 
obtained using LP_SOLVE, and Section 6 will demon-
strate that significant improvements can be achieved with 
a more efficient MIP solver. 

6 IMPROVING COMPUTATIONAL PERFORMANCE  
 

6.1 Optimized source code 
The MAXIHU and MAXILOU execution times shown in 
Fig. 4 have been obtained from the number of elapsed 

clock cycles provided by the CCStudio DSP simulator. 
This DSP simulator also provides the number of executed 
instructions. Although the TMS320C6455 is able to per-
form at 9600 MIPS using in parallel its 8 available func-
tional units, the analyses of the number of executed in-
structions shows that, in average, only one instruction is 
executed every 5 or 6 clock cycles depending on the num-
ber of users participating in the resources distribution 
process. This low number of executed instructions per 
clock cycle is due to the fact that the source code of the 
JRRM algorithm and the linear programming tools has 
not been optimized to be implemented in the DSP plat-
form. The non-optimized source code results in a high 
number of clock cycles spent without executing instruc-
tions due to cache penalties and/or memory wait states 
required by the physical device to access memory and 
read data. It is important to highlight that the linear pro-
gramming solver employed in this work is developed to 
be implemented on a computer, and is usually applied to 
analyse and solve problems where the time required to 
access memory is not a critical issue. In this context, a 
computational improvement factor of up to 40 or 48 could 
be achieved with an optimized code that utilizes the eight 
functional units available in the TMS320C6455.  

6.2 Linear Programming Solver 
As discussed in Section 4.2, the CPLEX solver has been 
shown to be more computationally efficient than 
LP_SOLVE in finding optimum solutions to MIP 
problems. Consequently, it is worthwhile analyzing the 
computational improvement that could be obtained if 
CPLEX was used instead of LP_SOLVE to implement the 
MAXIHU and MAXILOU JRRM proposals. Due to the 
unavailability of CPLEX source code for the DSP 
implementation, the CPLEX computational 
improvements have been evaluated by means of 
computer simulations executed on a 2.6GHz AMD 
Opteron processor. Although this evaluation 
environment does not provide a direct indication of the 
computational performance on a DSP hardware platform, 
it provides useful information about the improvements 
that could be obtained if more powerful solvers were 
used in the DSP implementation. The computational 
comparison has been conducted using the CPLEX 9.1.0 
and LP_SOLVE 5.5 versions.  

Table 3 compares the CPU time required by 
LP_SOLVE and CPLEX to solve the MAXIHU and MAX-
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Fig. 4. MAXIHU and MAXILOU real-time computational  

performance (in seconds): TMS320C6455 and LP_SOLVE. 

TABLE 3 
CPU TIME (IN SECONDS) 

  MAXIHU MAXILOU 
Users per cell 8 10 15 20 8 10 15 20 

LP_SOLVE 
Avg 0.06 0.88 201 868 0.06 0.28 4.04 9.72 

95perc 0.27 3.96 1090 6897 0.16 0.93 9.02 15.39 

CPLEX  
Avg 0.01 0.03 0.21 0.16 0.02 0.04 0.23 0.48 

95perc 0.02 0.09 0.46 0.47 0.03 0.09 0.83 0.55 
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ILOU JRRM resource distribution problems under differ-
ent cell loads. The conducted simulations revealed that 
only when 5 users actively request resources, LP_SOLVE 
is faster than CPLEX, although both solvers achieve the 
optimum solution in very short times. LP_SOLVE re-
quires average times equal to 0.7ms and 1ms to achieve 
the optimum solution with MAXIHU and MAXILOU, 
while CPLEX required on average 2ms for both JRRM 
techniques. On the other hand, CPLEX significantly re-
duces the time needed to find JRRM solutions, in particu-
lar under high cell loads where MIP problems with a 
large number of variables and constraints need to be 
solved. This trend is also observed in Fig. 5, which 
represents the CDF of the time required by each solver to 
achieve a JRRM solution when MAXIHU is applied in 
scenarios with 10 and 15 users per cell. The benefits ob-
tained using CPLEX vary based on the simulated scenario 
and the evaluated JRRM technique. For example, CPLEX 
solves 95% of the JRRM problems with 8 users demand-
ing resources in less than 22ms and 31ms when MAXIHU 
and MAXILOU are applied, while this percentage is re-
duced to 53% and 34% when LP_SOLVE is used. With 10 
users per cell, the 95 percentile time is reduced from 3.96s 
and 0.93s for MAXIHU and MAXILOU using LP_SOLVE 
to just 89ms and 90ms with CPLEX. In this context, it is 
worthwhile noting that CPLEX achieves similar MAXIHU 
and MAXILOU computational times, which was not the 
case when using LP_SOLVE. Even if the cell load is 
further increased, CPLEX is still capable to guarantee ex-
ecution times of just a few hundred milliseconds, with 
reductions of approximately one order of magnitude 
when comparing MAXILOU’s 95 percentile. Based on the 
obtained results, the use of CPLEX, together with an op-
timized source code, will provide acceptable execution 
times for the implementation of MAXIHU and MAXILOU 
in real systems. As an example, Table 4 shows estimated 
MAXILOU DSP execution times when the CPLEX and 
optimized source code improvements previously re-
ported are applied to the MAXILOU DSP execution times 

measured using LP_SOLVE and reported in Fig. 4. The 
comparison of Table 4 and Fig. 4 shows that while MAX-
ILOU needed on average 48 seconds to find an optimum 
resources distribution when 15 active users requested 
radio resources and LP_SOLVE was used, this value 
would be reduced to just 3 seconds if CPLEX is used in-
stead. Section 6.1 indicated that a computational im-
provement factor of up to 40 or 48 could be achieved with 
an optimized code that utilizes the eight functional units 
available in the TMS320C6455. If we just consider an op-
timized code improvement factor of 10 together with the 
use of CPLEX, Table 4 shows that MAXILOU's implemen-
tation in DSP platforms would just require around 300ms 
to distribute radio resources among 15 active users per 
cell. 

The computational differences observed with 
LP_SOLVE and CPLEX are due to their different 
methodologies to implement and execute the simplex and 
Branch and Cut methods (section 4.1). Fig. 6 represents 
the CDF of the total number of iterations executed by the 
simplex mechanism, and Fig. 7 the CDF of the number of 
nodes explored by the Branch and Cut method until the 
optimal solution to the JRRM problem is found when 
MAXIHU is applied. Both figures show that the simplex 
and Branch and Cut implementations are more efficient 
in the case of CPLEX than in the case of LP_SOLVE. For 
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TABLE 4 
ESTIMATED AVERAGE MAXILOU DSP EXECUTION TIME  

(IN SECONDS) 

Users per cell 8 10 15 20 
Applying CPLEX  

improvement factor 1.34 1.23 3.07 3.21 

Applying CPLEX and optimized 
source code improvement factor 0.14 0.13 0.31 0.32 
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example, LP_SOLVE requires 54.6 times more iterations 
and explores 284.4 times more nodes than CPLEX for 50% 
of analyzed JRRM problems.  

Finally, it is also relevant noting that better perfor-
mance could even be achieved if a solver designed to con-
sider the specific characteristics of the MIP JRRM prob-
lems could be used instead of a general purpose linear 
programming solver such as CPLEX [31]. This fact justi-
fies the better performance of LP_SOLVE when a low 
number of users participate in a JRRM distribution 
process; the methodologies implemented in LP_SOLVE 
focus on MIP problems with a relatively low number of 
variables and constraints. On the other hand, the metho-
dologies implemented in CPLEX are good for a wide type 
of MIP problems, which results in good computational 
performance independently of the number of variables 
and constraints.  
 

6.3 Suboptimal Solutions  
Previous sections have demonstrated the feasibility of 
implementing the proposed JRRM techniques in real mo-
bile communication systems using powerful hardware 
and software tools. The computational execution cost can 
be further reduced at the cost of eliminating the optimali-
ty condition in the radio resources distribution. In this 
context, the computational performance and the QoS sa-
tisfaction levels should be evaluated to achieve a suitable 
tradeoff between both parameters.  

To reduce the time needed to solve a JRRM problem, a 
variant of the MAXIHU technique is here analysed. The 
variant ends the radio resources distribution process 
when a feasible solution previous to the optimal one is 
achieved, and this suboptimal solution satisfies a given 
condition. This condition refers to the gap between the 
current feasible solution a, and the solution b correspond-
ing to the optimum objective value achieved for the JRRM 
problem when the integer condition of all the unknown 
variables is relaxed and real values are allowed (b is the 
bound solution to the JRRM problem). The gap between 
both solutions is calculated as follows: 

100*
)(abs1

abs(%) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=− b

bagap ba  (14) 

where abs() represents the absolute value. The 
suboptimal condition was established so that when the 
gap between both solutions a and b is lower than 25%, the 
JRRM algorithm stops and adopts the suboptimal 
solution (a) as its JRRM solution to the radio resources 
distribution process under study. The suboptimal 
approach was tested through computer simulations for 10 
users per cell. The tests resulted in that 38.46% of the 
JRRM problems explore, in average, 313 nodes less than 
the optimum solution achieved with the original JRRM 
MAXIHU technique. However, this implementation cost 
reduction didn’t reduce significantly the computation 
time or the user QoS level. 

The simulations conducted in Sections 5 and 6.2 

showed that MAXIHU’s JRRM resolution process was 
capable to rapidly find and improve feasible, but not op-
timal, solutions. After this initial phase, the JRRM process 
only improves slightly and slowly the objective function 
despite exploring a high number of nodes. This trend 
emphasizes a possible trade-off between performance and 
implementation cost, since it is possible to find a subop-
timal solution with a much smaller computational cost. In 
this context, a second condition is applied during the 
JRRM resolution process to try to reduce the computa-
tional time: if the gap between the current suboptimal 
feasible solution and the previously achieved feasible 
solution is lower than 10%, the algorithm ends its radio 
resources distribution process. When this approach was 
applied in the scenario with 10 active users per cell, 
86.42% of the JRRM problems explored, in average, 4582 
nodes less than if the optimum solution was achieved. 
Fig. 8 represents the CDF of the time required by the 
JRRM MAXIHU algorithm using LP_SOLVE to achieve 
the optimum solution, and the time needed to achieve the 
suboptimal solution when both suboptimal conditions are 
applied. This figure corresponds to scenarios where 8 and 
10 users per cell demand radio resources. The percentage 
of users per service class that achieve the minimum, mean 
and maximum QoS levels shown in Fig. 1 when the opti-
mum and suboptimum JRRM processes are applied is 
reported in Tables 5 and 6, respectively. The results ob-
tained show that the computational cost of advanced 
JRRM techniques can be significantly reduced with sub-
optimal solutions that do not significantly degrade the 
user perceived QoS levels. The conducted study has 
shown that, under the evaluated conditions, the QoS de-
gradations resulting from the non-optimality JRRM ap-
proach only affect the less priorised services, while the 
most demanding services are capable to maintain their 
maximum QoS satisfaction levels. 
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7 CONCLUSIONS 
This work has conducted the first hardware implementa-
tion feasibility study of advanced JRRM techniques for 
heterogeneous wireless networks. The proposed, imple-
mented and evaluated techniques are based on linear 
programming and optimization algorithms, and have 
been shown to achieve good system performance under 
multimedia traffic conditions. To evaluate their imple-
mentation feasibility, the JRRM techniques have been 
implemented in a DSP simulator software using open 
source linear programming solvers. The conducted study 
has shown the feasibility to implement these novel poli-
cies in real systems using state-of-the-art chipsets that 
allow achieving acceptable JRRM execution time under 
medium loads and a large number of variables. The study 
has also revealed that the JRRM computational perfor-
mance can be further improved, in particular for high cell 
loads, using advanced and optimized linear program-
ming software and algorithms. The application of subop-
timal JRRM policies has also been shown to significantly 
reduce the technique’s execution time, with only a slight 
decrease in the achieved user perceived QoS levels for the 
less priorised services. 
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